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Effect of externally applied periodic force on ion acoustic waves

in superthermal plasmas

Snigdha Chowdhury,® Laxmikanta Mandi,” and Prasanta Chatterjee®
Department of Mathematics, Siksha-Bhavana, Visva-Bharati University, Santiniketan 731235, India

(Received 28 November 2017; accepted 26 March 2018; published online 18 April 2018)

Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped
electrons. The reductive perturbation technique is employed to obtain a forced Korteweg—de Vries-
like Schamel equation. An analytical solution is obtained in the presence of externally applied
force. The effect of the external applied periodic force is also observed. The effect of the spectral
index (i), the strength (fy), and the frequency () on the amplitude and width of the solitary wave
is obtained. The result may be useful in laboratory plasma as well as space environments.
Published by AIP Publishing. https://doi.org/10.1063/1.5017559

I. INTRODUCTION

The existence of highly energetic superthermal particles
in different plasma situations, which results in long-tailed
distributions, is an essential part in different space'®?=*
and laboratory plasma®*™° inspections. A good number of
different models have been suggested to relate this effect on
nonlinear wave dynamics through phenomenological correc-
tion to the electron distribution function.

It is important to note that a way of dealing with non-
Maxwellian plasma modeling is given by the kappa distribu-
tion' ™ which was reported by Vasyliunas' for the first time to
fit phenomenologically the special power law-like dependence
of electron distribution functions that are observed in space
plasma environments. The spectral index kappa (i), for which
the distribution is known as the kappa distribution, is acted to
modify the effective thermal speed in the case of the distribu-
tion function. It is seen that at low values of «k, the distributions
exhibit strong superthermality. This superthermal distribution
tends to a Maxwellian distribution as x tends to infinity.
Furthermore, it is commonly fitted to observational data.>™

It is well known that the Korteweg—de Vries (KdV)
equation describes the weakly nonlinear dispersive waves in
small but finite amplitude limit, and this theory has been
employed to study the ion acoustic waves in plasmas.®
Recently, many authors have analysed ion acoustic waves
and electrostatic structures in superthermal plasmas by
applying the KdV theory.”® Another commonly perceived
phenomenon in both space plasma and experimental plasma
is that of particle trapping phenomena, whereby few of the
plasma particles are imprisoned to a finite area of phase
space where they bounce back and forth. These studies have
been reported numerically”'® and have been found in both
space environments and laboratory environments.''™!* In
this paper, we have studied the effect of particle trapping in
a k distributed plasma when there is an external periodic
perturbation.

YAuthor to whom correspondence should be addressed: math.sc14@
gmail.com

DE-mail: laxmikantal 1@gmail.com

9E-mail: prasantachatterjee |@rediffmail.com

1070-664X/2018/25(4)/042112/6/$30.00

25, 042112-1

The effect of external periodic perturbation has been
noted in some real physical situations,"*'® and it has also
been found that these external periodic perturbations may
vary on different physical conditions. Few recent studies
have emphasized on the study of nonlinear traveling wave
solution'®*2° considering an external periodic perturbation.
In this paper, our aim is to investigate the ion acoustic soli-
tary waves in an unmagnetized plasma with x-distributed
trapped electrons in the presence of an external periodic
perturbation.

The rest of the paper is organized as follows: The model
equations are provided in Sec. II. In Sec. III, we derived the
forced Schamel equation. We derived the solitary wave solu-
tion of the forced Schamel equation in Sec. IV. Section V
represents the numerical simulation and discussion, and con-
clusions are presented in Sec. VI.

Il. MODEL EQUATIONS

Following Schamel®® and Williams,21 we have consid-
ered both superthermal and trapped electrons. Actually, the
superthermal electrons and trapped electrons are defined in
different energy regions; when the energy region lies between
—V2¢ < v < +/2¢ (v is the velocities and ¢ is the electric
potential), the electrons are trapped and the corresponding
distribution for the trapped electrons is as follows:

: B 1 I'(x)
~ek,r(vv ¢) = \/§‘< 3,>1/2 I(x—1/2)
T K—E
x |1+ ”2/27_3(’[) for E, <0. (1)

K3
This is an extension of Schamel’s distribution”? for
Maxwellian trapped electrons. As k tends to infinity, we get
back the Schamel’s equation. Schamel derived this expres-
sion by using the concept of a separatrix to the distribution
which separates free electrons from trapped electrons and for
the latter a trapped parameter f§ was introduced which mea-
sures the inverse temperature of the trapped electrons, and

Published by AIP Publishing.
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for superthermal free electrons, we have assumed the distri-
bution as

) —K

eh,‘f(vv (]5) = 1

(@)

(x >3/2 is a basic requirement for getting a well-
defined value of the characteristic speed.)
So, our n,(¢) will be given by

)= | e [1 o
—+00
+J’\/z_¢;fef(v7¢)dvv (3)

where £} (v, ¢) is represented by Eq. (2) andfe’f,(v, ¢) is rep-
resented by (1).
After integrating with respect to velocity, we get

(2K —3) (2 -3 -2¢) "

X |:(2K3)\/2K32(f)4 2/n

Tlx—3/2]

x /T 2“{— K3 L”

273 -2Kk+2¢
2 o
+m\/2/n(2x—3) 2. /¢
X (2k —3—=2B¢) Tk

Fy 1 %A
x2 {2”6’2’3—2“25(1)} @)

ne(¢) =

Keeping in mind that the hyper geometric function
F(a,b,c,x) has the following power series expansion

F(a,b,c,x) =1 +%x+ ”4(”f(l()f(1};+l) 2 -

up to ¢?), the expansion function n,(¢):

(keeping term

2k — 1 8v/2/n(p — DxI[x
ne(d))wl-f—( )¢+ /(3/2 IKEIR] 5
2Kk -3 3(2 — 3)*°Tk — 1/2]
4K2 —1 2
+—
22K — 3)? ¢
ne(¢) ~ 1+ pd + q¢** + r¢?, 3)
2=l o SV o 4l
where p = 5=, T 3203 T (k—1/2)’ dr _2(2’;73)2'

The one dimensional normalized fluid equations®' are
given by

On  O(nu)

EJr o =0, (6)
ou _ ou ¢

o o T ax M
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a_x‘f:ne —n+S(x,1)
—(n—1)+pd+qdp’* +r$> +S(x,1), (8
2k—1 _ 84/2/n(B-1)xT(x) T |
where p = 5=, ¢ = 3003 T (12 and r = ET TR

Here, n, u, ¢ represent the ion density, velocity, and
electrostatic potential, respectively. The term S(x, ¢) is a
charge density source arising from experimental conditions
for a single definite purpose. Now, we consider the following
normalizations: lengths are normalized by Debye length

- cokgT, 1/2
D = \ noze? ’

1/2
ency . — (mze)"
qu y Wp = €om ’

time (7) by the inverse of the plasma fre-

number density by the equilibrium

ion density ng, electrostatic potential by (k"T> and veloci-

ties by the characteristic speed ¢, = ({’;’f};)

lll. DERIVATION OF THE FORCED SCHAMEL
EQUATION

To study the nonlinear phenomena, we introduce the

reductive perturbation technique (RPT) of Schamel.”
According to RPT, the stretch coordinates as follows:

(= —un), ©)

=/, (10)

where € is an infinitely small parameter. The dependent vari-
ables n, u, ¢, S(x, ) can be expanded as follows:

n~1l+en +6em+- - (11)
un~ e + e uy+ - (12)
b ~epy+ 2y (13)

S(x, 1) ~ €285 (x, 1) + - - - (14)

Substituting Egs. (9)—(14) in the model equations (6)—(8) and
comparing the coefficients of different order of €, one can
obtain

€:ny =poy, (15)
3, P B 32
i + 1 =pdy +qdy" +5:(87),  (16)
ony  Ou ouy  0¢
s/4. Yt 9R oup  opy
it ge =0 v s =5 =0, (17)
811 u 811 8u ouy  0¢
74 . Om 2 Om 2 1 2
e 85 +—= RE =0, 35 +—= +_8f 0.
(18)

To obtain dispersion relation, we eliminate the perturbed
quantities from (15) and (16) and we get
1
v =-—. (19)
p

The detailed calculation is shown in the Appendix.
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Considering Egs. (15)—(18), we get the nonlinear evolu-
tion equation as

5¢1 3¢1 g1 _ 05
+AV =B——, 20
863 Rk (20)
where
_ 3q 1
T4y T opi

Recently, Sen ef al.'” have studied non-linear wave excita-
tion by orbiting charged space debris objects. They consid-
ered the source term S(x — vyf) in the Poisson equation
which is obtained from the charged debris, moving at a
speed v,. There is no work in the area where the externally
applied force is solely dependent on 7. Recently, Ali er al.*’
and Saha and Chatterjee®® have considered the same (the
source term) in the Poisson equation. Being motivated by
these works, we have considered the source term on the
Poisson equation, instead of equation of continuity; how-
ever, till today no work has been reported in the form of
KdV-like Schamel equation. Considering their works, we
suppose S, =1 s Ecos(wt), where f; and o denote the
strength and frequency, respectively. Using this, one can
obtain from Eq. (20)

5¢1 +A\/7%+B 82 =fo cos(wt),  (21)

and this is known as forced KdV-like Schamel equation.

IV. SOLITARY WAVE SOLUTION OF THE FORCED
SCHAMEL EQUATION

The Schamel equation with an external periodic force
fo cos(wt) is

Phys. Plasmas 25, 042112 (2018)

where f; is the strength of the periodic force and w is its
frequency.

When f, = 0, Eq. (22) represents KdV-like Schamel
equation and the solitary wave solution is of the form

$1 = d, sech* (é _WUT), ©3)

where ¢,, = (M)

width of the ion-acoustic solitary wave, respectively, and U
is the speed of the ion-acoustic solitary wave.
It is known that for a KdV equation

and W = % are the amplitude and

I = r Prdé (24)

is a conserved quantity.
It can be easily shown that / is conserved in the case of
the Schamel equation also.

When fy # 0, we consider the amplitude, width, and
2325

velocity of the solitary wave dependent on t and the
approximate solution of (22) is of the form
E-Ur)e
¢ = b,,(7) sech? (W ; (25)

where the amplitude ¢,,(7) = (15U<7))2 and the width W(r)

84
16B
U(x)

Considering the same as the conservation law of KdV
equation, one can obtain

10125 "
[ = 224A4\/_U() (26)

U(1) have to be determined.

Also

75U(x)**VB

e 4 5
| pde =S =220 @
7] 8
¢1 + A\ P ¢1 8? = fo cos(wr), (22) Differentiating (24) with respect to t
di > . . dpy .
prie 2fy cos(wr) ¢,d¢ | using boundary conditions that ¢, and ra vanished when ¢ — *oo |. (28)
|
Using (26) and (27) in Eq. (28), we have So
64A2 fy si
) U(T)Z — fO Sln(wt) + k2

d 32A 135 )
Ur)—U(r) = fo cos(wr). (29) (31)

dt 135 2L o

U(e) = 64A* f, sin(wt) g
Integrating (29) with respect to 7, we have 135 @

(0)? = 64A f, sin(w1)
135 o

+ M. (30)

Initially, t = o, My = k2.

So, the solution of (22) is of the form

¢ = ¢, (1) sec h* (£;£i§)f), where U(t) is given by (31),
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FIG. 1. Variation of the solitary wave
solution of Eq. (22) for fy =0 (red
curve), fo = 0.01 (blue curve), and fy
=0.02 (black curve) with k = 2.5,
- Uy=02,=05w=11=1.
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FIG. 2. Variation of the solitary wave solution of Eq. (22) for = 0.5 (red
curve), =1 (blue curve), and ®w = 1.5 (black curve) with x = 2.5,
Uy=0.1, =05, =0.02,7 = 1.

and the amplitude and width are as follows:

 Sfysin(wr) | 225K
On(t) =3 64A2
1/2
16B
(o) = °
\/64A2f0 sin(wr) e
135w

V. NUMERICAL SIMULATION AND DISCUSSIONS

The effects of parameters fj, o, spectral index x on the
ion acoustic solitary wave structure of the KdV like Schamel
equation (22) have been studied in this section.

Figure 1 shows the variation of the ion acoustic solitary
wave for different values of f;, with other parameters
k=25Uy=02,=05 w=1,t=1. It is observed
that the amplitude of the ion acoustic solitary wave increases
as the strength f; of the external periodic force increases.

In Fig. 2, we present the variation of the ion acoustic
solitary wave for different values of frequency w of the
externally applied force with fixed values of other parame-
ters k = 2.5, Uy = 0.1, f = 0.5, fp, = 0.02, = 1. It is seen
that the amplitude of the ion acoustic solitary wave decreases
as the frequency of the external periodic force increases.

20 25

0.9 T T T T T T T T

FIG. 3. Variation of the solitary wave solution of Eq. (22) for k = 2.4 (red
curve), k = 2.5 (blue curve), and x = 2.6 (black curve) with other parame-
ters same as in Fig. 2.

Figure 3 reflects the variation of the ion acoustic solitary
wave for different values of the spectral index (x) with fixed val-
ues of other parameters w = 1, Uy = 0.1, f = 0.5, fo = 0.02,
7 = 1. It is observed that as the spectral index (i) increases, the
amplitude of the ion acoustic solitary waves decreases.

In Fig. 4, we plot ¢,,(7) vs. fy for different values of fre-
quency @ of the external periodic perturbation, and other

1.4 T T T T T T T T

1+ = . /

/

w=1 /

w=1.5

0.8

¢, (1)

0.6

0.4

0.2

0 I I I I I I I I I
0 0.005 0.01 0.015 002 0025 0.03 0.035 004 0045 0.05

fo

FIG. 4. Variation of the Amplitude of the solitary wave solution of the
equation (1) for @ =0.5 (red curve), =1 (blue curve) and w=1.5 (black
curve) with other parameters same as Fig. 2.
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parameters are same as in Fig. 2. The amplitude of the solitary
wave increases as the force increases. At the same time, when
the frequency of the external periodic forces increases, the
rate of change of amplitude of the solitary wave decreases.

VI. CONCLUSIONS

We have studied ion acoustic solitary waves in super-
thermal plasmas in the presence of trapped electrons. The
reductive perturbation technique has been employed to
derive the KdV-like Schamel equation. An analytical solitary
wave solution has been derived for the Schamel equation in
the presence of the externally applied periodic force. The
effect of the externally applied periodic force on the ion
acoustic solitary wave solution with fixed values of other
physical parameters x, Uy, f has been presented. The soli-
tary wave becomes smooth when the strength (fy) of the
external force decreases. On the other hand, the amplitude of
the solitary wave increases when the frequency (w) of the
periodic force decreases. The result may be useful in labora-
tory plasmas as well as space environments.
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dr
00 a¢ 834)
— J_OO . A\/_ 1 853‘

dl
dt e

Using (A2) and (A3) in Eq. (A4), we have

d (10125 7 75U (7)*/*B!/?
p (— VBU(t )2> = ZTLﬁ) cos(wr)

224A4 A2
10125 sd 75U(x)**B1/2
o 5 _ =\ =
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